反馈与建议
按Enter进行搜索或Esc关闭
按Enter进行搜索或Esc关闭

NOG-MHC I/II-2 KO Mice (NOG-dKO)

品系代码:

411

专业名称:

NOD.Cg-PrkdcscidIl2rgtm1SugB2mem1TacH2-Ab1tm1Doi/JicCrl

小鼠,免疫缺陷模型免疫学,肿瘤学同类系,免疫缺陷

【CIEM正式授权】PBMC人源化模型构建、肿瘤免疫治疗、T细胞免疫功能研究、GVHD相关研究、免疫检查点抑制剂研究。

品系来源

NOG-dKO(NOG-MHC I/II-2 KO)小鼠是由日本中央实验动物研究所(CIEM)的Mamoru Ito博士培育而成。Mamoru Ito博士实验室利用CRISPR技术在NOG小鼠基础上敲除B2m和Ab1基因,培育出的双基因敲除模型。

* CIEM已将NOG-dKO在日本地区的名称更新为NOG-ΔMHC (NOG-Iab KO, B2m KO2),但在中国地区维通利华仍沿用NOG-dKO名称,二者实际为同一品系,点击查看

 

【维通利华 - 中国大陆地区CIEM官方授权经销商 - NOG模型系列】

✈ 2019年、2020年,维通利华从CIEM引入该品系核心群。

☑ 拓展阅读:不同NOG衍生品系的特点与应用场景解析

 

科研必备:不同NOG衍生品系的特点与应用场景解析

科研必备:不同NOG衍生品系的特点与应用场景解析

 

咨询我们的NOG模型专家

 

应用特性

研究用途

  • 免疫系统重建(huPBMC-NOG-dKO) (huPBMC-NOG-dKO现货提供)
  • 肿瘤免疫治疗
  • CAR-T药效评估:NOG-dKO小鼠可降低CAR-T细胞在临床前动物实验中的GvHD反应,助于药效评估。
  • T细胞免疫功能研究
  • GVHD研究

 

特性:

毛色:白化

除了NOG小鼠的特性外,还具备以下特性:

  • MHC Ⅰ/Ⅱ缺失;
  • hPBMC移植后,窗口期可延长至12周;
  • hPBMC移植后,GVHD发生延迟

 

huPBMC-NOG-dKO

➢制备周期短,成本低

➢T细胞重建

➢GvHD反应弱,研究周期可长达12周

➢靶点在T细胞的肿瘤免疫治疗:双特异性抗体、免疫检查点抑制剂

 

特别提示:

NOG-dKO小鼠的huPBMC免疫系统重建模型,由于敲除了MHC I/II 类分子,huPBMC注射后GVHD反应非常弱,一方面提高了研究周期,可达12周。另一方面由于没有PBMC Xeno-GVHD造成的非特异性T细胞扩增,能更精准地评判药物的抗肿瘤活性。

 

同时由于NOG-dKO小鼠PBMC注射后GVHD反应非常弱,不会引起由于GVHD反应而导致的T细胞扩增,从而重建率要低于NOG小鼠,故注射剂量要稍高。日本CIEM建议移植剂量为5-10*10^6,维通利华对外提供的模型注射剂量在5-7*10^6范围内,不同的donor来源会有差异,供参考。

价格规格

品系代码 品系名称 日/周龄 性别 VAF/SPF级 Elite/SPF级
411
NOG-dKO
1-8周
  1050

 

*以上规格与价格自2025年1月1日至2025年12月31日有效。

生长曲线

NOG-MHC I/II-2 KO Mice (NOG-dKO)

应用文献

NOG dKO Publications

 

Authors

Year

Paper Title

Keywords

Huan Wei, et al.

2025

Mogat1 drives metabolic adaptations to evade immune surveillance

T-cell infiltration,Mogat1, PD-1, MDA-MB-231

Tomoatsu Ikeya, et al.

2025

Impact of the PD-1/PD-L1 inhibitor SCL-1 on MDA-MB231 tumor
growth in a humanized MHCdouble knockout NOG mouse model

Immune checkpoint inhibitor, PD-1/PD-L1, Triple-negative breast cancer, NOG mouse,
Humanized mouse

Jiayi Shen, et al.

2024

Low Immunogenicity of Keratinocytes Derived from Human Embryonic Stem Cells

keratinocytes, embryonic stem cells, differentiation, allograft rejection, immunogenicity

Yoshikawa, et al.

2024

Development of a chimeric cytokine receptor that captures IL-6 and enhances the antitumor response of CAR-T cells

chimeric cytokine receptor G6/7R, IL-6, CAR-T

Yun Huang, et al.

2024

Targeting site-specific N-glycosylated B7H3 induces potent antitumor immunity

B7H3,monoclonal antibody, Ab-82, cytotoxic T lymphocyte

Keisuke Ohta, et al.

2024

Therapeutic Efficacy of IL7/CCL19-Expressing CAR-T Cells in Intractable Solid Tumor Models of Glioblastoma and Pancreatic Cancer

CAR-T, IL7/CCL19, EGFR, Glioblastoma, Pancreatic Cancer,

Ryu Matsumoto, MD, et al.

2024

CD8+ T cell-mediated rejection of allogenic human-induced pluripotent stem cell-derived cardiomyocyte sheets in human PBMC-transferred NOG MHC double knockout mice

HiPS-CMs, CD8+ T cell-mediated rejection, NOG MHC double knockout mice, xeno-GVHD, iPS

Guo et al.

2024

A CD36-dependent non-canonical lipid metabolism program promotes immune escape and resistance to hypomethylating agent therapy in AML

CD36, AML, MV4-11, T cell, immunosuppression

Zhu W, et al.

2024

OMA1 competitively binds to HSPA9 to promote mitophagy and activate the cGAS–STING pathway to mediate GBM immune escape

OMA1. HSPA9, cGAS–STING pathway, GBM,PD-1, CD8+T

Shen, J, et al.

2024

Low Immunogenicity of Keratinocytes Derived from Human Embryonic Stem Cells

keratinocytes; embryonic stem cells; differentiation; allograft rejection; immunogenicity

Hirofumi Nakano, et al.

2024

Fatty Acids Play a Critical Role in Mitochondrial Oxidative Phosphorylation in Effector T Cells in Graft-versus-Host Disease

Fatty Acids, GvHD, MHC-/- NOG , MHC+/+ NOG , CD8+T, CD4+T

Yi Ouyang, et al.

2023

FGFR3 Alterations in Bladder Cancer Stimulate Serine Synthesis to Induce Immune-Inert Macrophages That Suppress T-cell Recruitment and Activation

FGFR3, duvelisib,bladder cancer cells, T cell, macrophage

Takahiro Sasaki, et al.

2023

Therapeutic effects of anti-GM2 CAR-T cells expressing IL-7 and CCL19 for GM2-positive solid cancer in xenograft model

CAR-T cell, chemokine, cytokine, ganglioside, solid cancers

Zhou C, et al.

2023

Disruption of SLFN11 deficiency-induced CCL2 signaling and macrophage M2 polarization potentiates anti-PD-1 therapy efficacy in hepatocellular carcinoma

Schlafen 11; tumor-associated macrophages; immune checkpoint inhibitors; serum biomarker

Zhuang Chen, et al.

2023

YTHDF2-mediated circYAP1 drives immune escape and cancer progression through activating YAP1/TCF4-PD-L1 axis

circYAP1, YAP1/TCF4, PD-L1, CD8+ T, HCT116

Y. Wang, et al.

2023

PRMT3-Mediated Arginine Methylation of METTL14 Promotes Malignant Progression and Treatment Resistance in Endometrial Carcinoma

PRMT3, SGC707, endometrial cancer (EC), PD-1, PBMC-NOG-dKO

Yasuto Akiyama, et al.

2022

Development of Novel Small Antitumor Compounds Inhibiting PD-1/PD-L1 Binding

SCC-3, PD-1/PD-L1,small chemical compound,PBMCs

Bo Wang, et al.

2021

Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells

CAR-T, iPSC-derived T cells, CD20, B-lymphoblastoid cell line

Takeshi Watanable

2021

human-type artificial lymphoid tissues induce antigen-specific immune responses upon antigen stimulation

artificial lymphoid tissues (aLTs), immunotherapy

Ling Yin, et al.

2020

Humanized mouse model: a review on preclinical applications   for cancer immunotherapy

humanized mouse model, cancer, immunotherapy

Akira Iizuka, et al.

2019

A T-cell–engaging   B7-H4/CD3-bispecific Fab-scFv Antibody Targets Human Breast Cancer

bsAbs, breast cancer, PBMCs, humanized

Tadashi Ashizawa, et al.

2019

Antitumor activity of the PD-1/PD-L1 binding inhibitor   BMS-202 in the humanized MHC-double knockout NOG mouse

PBMCs,PD-1/PD-L1 binding inhibitor, SCC-3,lympoma, humanized

Tadashi Ashizawa, et al.

2019

Impact of combination therapy with anti-PD-1 blockade and a   STAT3 inhibitor on the tumor-infiltrating lymphocyte status

pancreatic cancer,immune checkpoint blockade(ICB), PD-1, mAbs, STAT3   inhibitor, humanized

Yasufumi Kawasaki, et al.

2019

Alloreactive T Cells Display a Distinct Chemokine Profile in   Response to Conditioning in Xenogeneic GVHD Models

GvHD, CCR5 antagonist, pan T cell, humanized

Satoshi Aono, et al.

2018

Immunological   responses against hepatitis B virus in human peripheral blood mononuclear   cell-engrafted mice

Hepatitis B virus, vaccine, PBMCs, humanized

Tadashi Ashizawa, et al.

2017

Antitumor Effect of Programmed Death-1 (PD-1) Blockade in   Humanized the NOG-MHC Double Knockout Mouse

PBMCs, glioblastoma, lymphoma, PD-1, mAbs, humanized

Tomonori Yaguchi, et al.

2017

Human   PBMC-transferred murine MHC class I/II-deficient NOG mice enable long-term   evaluation of human immune responses

ACT, PBMCs, vaccine, humanized

Yasuto Akiyama, et al.

2017

The anti-tumor activity of the STAT3 inhibitor STX-0119   occurs via promotion of tumor-infiltrating lymphocyte accumulation in   temozolomide-resistant glioblastoma cell line

PBMCs, STAT3 inhibitor,TIL, TMZ-resistant glioblastoma, humanized

Tomonori Yaguchi, et al.

2013

MHC class I/II deficient NOG mice are useful for analysis of   human T/B cell responses for human tumor immunology research

PBMCs, humanized